This is Gentoo's testing wiki. It is a non-operational environment and its textual content is outdated.

Please visit our production wiki at https://wiki.gentoo.org

Manual de Gentoo: IA64/Discos

From Gentoo Wiki (test)
Jump to:navigation Jump to:search
This page is a translated version of the page Handbook:IA64/Installation/Disks and the translation is 100% complete.
IA64 Manual
Instalación
Acerca de la instalación
Elegir los medios
Configurar la red
Preparar los discos
Instalar el stage3
Instalar el sistema base
Configurar el núcleo
Configurar el sistema
Instalar las herramientas
Configurar el cargador de arranque
Terminar
Trabajar con Gentoo
Introducción a Portage
Ajustes USE
Características de Portage
Sistema de guiones de inicio
Variables de entorno
Trabajar con Portage
Ficheros y directorios
Variables
Mezclar ramas de software
Herramientas adicionales
Repositorios personalizados de paquetes
Características avanzadas
Configuración de la red
Comenzar
Configuración avanzada
Configuración de red modular
Conexión inalámbrica
Añadir funcionalidad
Gestión dinámica


Introducción a los dispositivos de bloque

Dispositivos de bloque

Examinaremos de forma detallada los aspectos de Gentoo Linux así como Linux en general que tengan que ver con discos, sistemas de archivos de Linux, particiones y dispositivos de bloque. Una vez familiarizados con las entrañas de los discos y sistemas de archivos, podemos establecer las particiones y sistemas de archivos para la instalación de Gentoo Linux.

Para empezar, explicaremos el término dispositivos de bloque. Quizás el dispositivo de bloque más conocido es el que representa la primera unidad de disco llamada /dev/sda. Las unidades SCSI y Serial ATA son etiquetadas mediante /dev/sd*; incluso las unidades IDE son reconocidas como /dev/sd* con la estructura libata del núcleo más reciente. Si está utilizando la antigua estructura de unidades, entonces la primera unidad IDE será /dev/hda.

Los dispositivos de bloque mencionados anteriormente representan una interfaz abstracta de disco. Las aplicaciones pueden hacer uso de estas interfaces para interactúar con el disco duro de la máquina sin tener que saber el tipo de unidad que tiene: IDE, SCSI, o cualquier otra. La aplicación puede simplemente dirigirse al almacenamiento en el disco como a una serie de bloques contiguos de acceso aleatorio de 512-bytes.


Partitions

Although it is theoretically possible to use a full disk to house your Linux system, this is almost never done in practice. Instead, full disk block devices are split up in smaller, more manageable block devices. On IA64 systems, these are called partitions.

Itanium systems use EFI, the Extensible Firmware Interface, for booting. The partition table format that EFI understands is called GPT, or GUID Partition Table. The partitioning program that understands GPT is called "parted", so that is the tool used below. Additionally, EFI can only read FAT filesystems, so that is the format to use for the EFI boot partition, where the kernel will be installed by "elilo".

Advanced storage

The IA64 Installation CDs provide support for LVM2. LVM2 increases the flexibility offered by the partitioning setup. During the installation instructions, we will focus on "regular" partitions, but it is still good to know LVM2 is supported as well.

Designing a partition scheme

How many partitions and how big?

The number of partitions is highly dependent on the environment. For instance, if there are lots of users, then it is advised to have /home/ separate as it increases security and makes backups easier. If Gentoo is being installed to perform as a mail server, then /var/ should be separate as all mails are stored inside /var/. A good choice of filesystem will then maximize the performance. Game servers will have a separate /opt/ as most gaming servers are installed there. The reason is similar for the /home/ directory: security and backups. In most situations, /usr/ is to be kept big: not only will it contain the majority of applications, it typically also hosts the Gentoo ebuild repository (by default located at /usr/portage) which already takes around 650 MiB. This disk space estimate excludes the packages/ and distfiles/ directories that are generally stored within this ebuild repository.

It very much depends on what the administrator wants to achieve. Separate partitions or volumes have the following advantages:

  • Choose the best performing filesystem for each partition or volume.
  • The entire system cannot run out of free space if one defunct tool is continuously writing files to a partition or volume.
  • If necessary, file system checks are reduced in time, as multiple checks can be done in parallel (although this advantage is more with multiple disks than it is with multiple partitions).
  • Security can be enhanced by mounting some partitions or volumes read-only, nosuid (setuid bits are ignored), noexec (executable bits are ignored) etc.

However, multiple partitions have disadvantages as well. If not configured properly, the system might have lots of free space on one partition and none on another. Another nuisance is that separate partitions - especially for important mount points like /usr/ or /var/ - often require the administrator to boot with an initramfs to mount the partition before other boot scripts start. This isn't always the case though, so results may vary.

There is also a 15-partition limit for SCSI and SATA unless the disk uses GPT labels.

What about swap space?

There is no perfect value for the swap partition. The purpose of swap space is to provide disk storage to the kernel when internal memory (RAM) is under pressure. A swap space allows for the kernel to move memory pages that are not likely to be accessed soon to disk (swap or page-out), freeing memory. Of course, if that memory is suddenly needed, these pages need to be put back in memory (page-in) which will take a while (as disks are very slow compared to internal memory).

When the system is not going to run memory intensive applications or the system has lots of memory available, then it probably does not need much swap space. However, swap space is also used to store the entire memory in case of hibernation. If the system is going to need hibernation, then a bigger swap space is necessary, often at least the amount of memory installed in the system.


Non-default example partition scheme

An example partitioning for a 20GB disk is shown below, used as a demonstration laptop (containing webserver, mailserver, gnome, ...):

root #df -h
Filesystem    Type    Size  Used Avail Use% Mounted on
/dev/sda5     ext4    509M  132M  351M  28% /
/dev/sda2     ext4    5.0G  3.0G  1.8G  63% /home
/dev/sda7     ext4    7.9G  6.2G  1.3G  83% /usr
/dev/sda8     ext4   1011M  483M  477M  51% /opt
/dev/sda9     ext4    2.0G  607M  1.3G  32% /var
/dev/sda1     ext2     51M   17M   31M  36% /boot
/dev/sda6     swap    516M   12M  504M   2% <not mounted>
(Unpartitioned space for future usage: 2 GB)

/usr/ is rather full (83% used) here, but once all software is installed, /usr/ doesn't tend to grow that much. Although allocating a few gigabytes of disk space for /var/ may seem excessive, remember that portage uses this partition by default for compiling packages. To keep /var/ at a more reasonable size, such as 1GB, alter the PORTAGE_TMPDIR variable in /etc/portage/make.conf to point to the partition with enough free space for compiling extremely large packages such as LibreOffice.

Using parted to partition the disk

The following parts explain how to create the example partition layout used in the remainder of the installation instructions, namely:

Partition Description
/dev/sda1 EFI Boot partition
/dev/sda2 Swap partition
/dev/sda3 Root partition

Change the partition layout according to personal preference.

Viewing the current partition layout

parted is the GNU partition editor. Fire up parted on the disk (in our example, we use /dev/sda):

root #parted /dev/sda

Once in parted, a prompt that looks like this shows up:

(parted)

At this point one of the available commands is help, to see the other available commands. Another command is print to display the disk's current partition configuration:

(parted)print
Disk geometry for /dev/sda: 0.000-34732.890 megabytes
Disk label type: gpt
Minor    Start       End     Filesystem  Name                  Flags
1          0.017    203.938  fat32                             boot
2        203.938   4243.468  linux-swap
3       4243.469  34724.281  ext4

This particular configuration is very similar to the one recommended above. Note on the second line that the partition table is type is GPT. If it is different, then the ia64 system will not be able to boot from this disk. To explain how partitions are created, let's first remove the partitions and recreate them.

Removing all partitions

Nota
Unlike fdisk and some other partitioning programs which postpone committing changes until the write instruction is given, parted commands take effect immediately. So once partitions are added or removed, there is no undo.

The easy way to remove all partitions and start fresh, which guarantees that we are using the correct partition type, is to make a new partition table using the mklabel command. This results in an empty GPT partition table.

(parted) mklabelgpt
(parted) mklabelprint
Disk geometry for /dev/sda: 0.000-34732.890 megabytes
Disk label type: gpt
Minor    Start       End     Filesystem  Name                  Flags

Now that the partition table is empty, we're ready to create the partitions. We will use a default partitioning scheme as discussed previously. Of course, don't follow these instructions to the letter but adjust to personal preference.

Creating the EFI boot partition

First create a small EFI boot partition. This is required to be a FAT filesystem in order for the IA64 firmware to read it. Our example makes this 32 MB, which is appropriate for storing kernels and elilo configuration. Expect each IA64 kernel to be around 5 MB, so this configuration leaves some room to grow and experiment.

(parted)mkpart primary fat32 0 32
(parted)print
Disk geometry for /dev/sda: 0.000-34732.890 megabytes
Disk label type: gpt
Minor    Start       End     Filesystem  Name                  Flags
1          0.017     32.000  fat32

Creating the swap partition

Let's now create the swap partition. The classic size to make the swap partition was twice the amount of RAM in the system. In modern systems with lots of RAM, this is no longer necessary. For most desktop systems, a 512 megabyte swap partition is sufficient. For a server, consider something larger to reflect the anticipated needs of the server.

(parted)mkpart primary linux-swap 32 544
(parted)print
Disk geometry for /dev/sda: 0.000-34732.890 megabytes
Disk label type: gpt
Minor    Start       End     Filesystem  Name                  Flags
1          0.017     32.000  fat32
2         32.000    544.000

Creating the root partition

Finally, create the root partition. Our configuration will make the root partition to occupy the rest of the disk. We default to ext4, but it is possible to use ext2, jfs, reiserfs or xfs. The actual filesystem is not created in this step, but the partition table contains an indication of what kind of filesystem is stored on each partition, and it's a good idea to make the table match the intentions.

(parted)mkpart primary ext4 544 34732.890
(parted)print
Disk geometry for /dev/sda: 0.000-34732.890 megabytes
Disk label type: gpt
Minor    Start       End     Filesystem  Name                  Flags
1          0.017     32.000  fat32
2         32.000    544.000
3        544.000  34732.874

Exiting parted

To quit from parted, type quit. There's no need to take a separate step to save the partition layout since parted has been saving it all along. Parted will give a reminder to update the /etc/fstab file, which is done later in the installation instructions.

(parted)quit
Information: Don't forget to update /etc/fstab, if necessary.


Crear los sistemas de archivos

Introducción

Creadas las particiones, debemos formatearlas para poder colocarles un sistema de archivos. En la próxima sección se describen los distintos sistemas de archivos soportados en Linux. Los lectores que ya sepan los sistemas de archivos que pueden usar deben ir a Creación de un sistema de archivos en una partición. En caso contrario siga leyendo para conocer los sistemas de archivos disponibles...

Sistemas de archivos

Existen varios sistemas de archivos disponibles. Algunos se consideran estables en la arquitectura ia64 - se aconseja leer sobre los sistemas de archivos y su estado de soporte antes de seleccionar uno de los más experimentales para particiones importantes.

btrfs
Un sistema de archivos de nueva generación que proporciona muchas caracterísyicas avanzadas como instantánea, autocorrección mediante sumas de comprobación, compresión transparente, subvolúmenes y RAID integrado. Algunas distribuciones han empezado a proporcionarlo como una opción aparte, pero no está listo para su uso en producción. Informaciones sobre corrupción del sistema de archivos son normales. Sus desarrolladores urgen a usar la última versión del núcleo por seguridad porque los antiguos tienen problemas conocidos. Esta ha sido la situación durante años y es demasiado pronto para decir si las cosas han cambiado. Las correcciones a problemas de corrupción raramente son llevadas a núcleos anteriores. Tenga cuidado cuando use este sistema de archivos!
ext2
Es un sistema de archivos Linux probado, pero no dispone de soporte para transacciones, lo que significa que las comprobaciones rutinarias al arrancar pueden tardar bastante tiempo. Ahora, hay muchas opciones alternativas, sistemas de archivos de nueva generación con soporte para transacciones cuya integridad puede ser verificada con mayor rapidez, por lo que gozan de mayor popularidad. Los sistemas de archivos transaccionales previenen retrasos durante el reinicio del equipo, incluso cuando el sistema de archivos está en un estado inconsistente.
ext3
Es la versión transaccional de ext2, que proporciona soporte para una rápida recuperación además de otros modos mejorados de funcionamiento como registro completo y ordenado de datos. Utiliza un árbol HTree como índice que permite un alto rendimiento en casi todas las situaciones. En resumen ext3 es un sistema de ficheros muy bueno y fiable.
ext4
El sistema de ficheros ext4 se creó como una bifurcación en el código (fork) del sistema de archivos ext3, incorporando nuevas características, mejoras de rendimiento y eliminación de los limites de tamaño realizando cambios moderados en el formato del disco. Puede trabajar con volúmenes de hasta 1 EB y con un tamaño máximo de fichero de 16TB. En lugar de la asignación de bloques usando mapas de bits que emplean los sistemas de archivos clásicos ext2/3, ext4 utiliza extents (en inglés), lo cual mejora el rendimiento con los archivos grandes y reduce la fragmentación. Ext4 también ofrece un algoritmo más sofisticado de asignación de bloques (asignación demorada y asignación múltiple de bloques) ofreciendo al controlador del sistema de archivos más formas de optimizar la disposición de los datos en el disco. Ext4 es el sistema de archivos recomendado para las plataformas de propósito general.
f2fs
El sistema de archivos con dispositivos ideado para dispositivos flash fue creado originalmente por Samsung para utilizarlo con memoria flash NAND. En el segundo cuarto del año 2016, este sistema de archivos aún se considera inmaduro pero es una opción decente cuando se instala Gentoo en tarjetas microSD, discos USB u otros dispositivos de almacenamiento basados en la tecnología flash.
The Flash-Friendly File System was originally created by Samsung for the use with NAND flash memory. As of Q2, 2016, this filesystem is still considered immature, but it is a decent choice when installing Gentoo to microSD cards, USB drives, or other flash-based storage devices.
JFS
Es un sistema de archivos de alto rendimiento con soporte transaccional. Es de IBM. JFS es un sistema de archivos ligero, rápido y fiable, basado en un árbol B+ con un buen rendimiento bajo varias condiciones.
ReiserFS
Es un sistema de archivos B+ (basado en árboles balanceados) que tiene un gran rendimiento, especialmente cuando trata con muchos archivos pequeños, a costa de emplear más ciclos de CPU. ReiserFS parece tener menos mantenimiento que otros sistemas de archivos.
XFS
Es un sistema de archivos transaccional que trae un juego de características robustas y está optimizado para ser escalable. XFS parece ser menos robusto ante fallos hardware.
vfat
También conocido como FAT32, es soportado por Linux aunque no permite ninguna configuración de permisos. Se usa mayormente por interoperabilidad con otros sistemas operativos (principalmente Microsoft Windows) aunque también es necesario para algunos sistema de firmware (como UEFI).
NTFS
Este sistema de archivos de "Nueva Tecnología" es el buque insignia de los sistemas de archivos de Microsoft Windows. Al igual que el sistema vfat descrito arriba, no almacena los ajustes de permisos o los atributos extendidos necesarios para que los sistemas BSD o Linux funcionen correctamente, por lo tanto no se pueden utilizar como sistemas de archivos del raíz. Debería utilizarse únicamente para interoperar con los sistemas Microsoft Windows (observar el énfasis especial en únicamente).

Cuando se usa ext2, ext3 o ext4 en una partición pequeña (menos de 8GB), debe crearse el sistema de archivos especificando las opciones adecuadas para reservar suficientes inodos. La orden mke2fs (mkfs.ext2) utiliza la proporción "bytes por inodo" para calcular cuántos inodos debe tener un sistema de archivos. En particiones pequeñas es aconsejable aumentar el número de inodos respecto al calculado de esa manera.

En ext2, se hacer usando la siguiente órden:

root #mkfs.ext2 -T small /dev/<dispositivo>

En ext3 y ext4, hay que añadir la opción -j para habilitar el diario (journaling):

root #mkfs.ext2 -j -T small /dev/<device>

Así se generarán el cuadruple de inodos de manera que los "bytes por inodo" se reducen desde 1 por cada 16kB hasta 1 por cada 4kB. Este ajuste aun puede hacerse mas fino indicando la proporción que se desee:

root #mkfs.ext2 -i <proporción> /dev/<dispositivo>

Creación de un sistema de archivos en una partición

Para crear un sistema de archivos en una partición o volumen, existen utilidades de espacio de usuario disponibles para todos los sistemas de archivos. Hacer clic en el nombre del sistema de archivos de la tabla de abajo para obtener información de cada sistema de archivos:

Sistema de archivos Orden de creación ¿En el CD mínimo? Paquete
btrfs mkfs.btrfs sys-fs/btrfs-progs
ext2 mkfs.ext2 sys-fs/e2fsprogs
ext3 mkfs.ext3 sys-fs/e2fsprogs
ext4 mkfs.ext4 sys-fs/e2fsprogs
f2fs mkfs.f2fs sys-fs/f2fs-tools
jfs mkfs.jfs sys-fs/jfsutils
reiserfs mkfs.reiserfs sys-fs/reiserfsprogs
xfs mkfs.xfs sys-fs/xfsprogs
vfat mkfs.vfat sys-fs/dosfstools
NTFS mkfs.ntfs sys-fs/ntfs3g

Por ejemplo, para formatear la partición de arranque () en ext2 y la partición raíz (/dev/sda3) en ext4, tal como se usa en la estructura de particiones de ejemplo, se utilizarán las siguientes órdenes:


root #mkfs.ext4 /dev/sda3

Ahora puede crear los sistemas de archivos sobre sus particiones (o volúmenes lógicos) recién creados.

Activar la partición de intercambio

mkswap es la orden utilizada para inicializar particiones de intercambio:

root #mkswap /dev/sda2

Para activar la partición, use swapon:

root #swapon /dev/sda2

Cree y active la partición de intercambio con las órdenes mencionadas arriba.

Montar la partición raíz

Ahora que las particiones están inicializadas y albergan sistemas de archivos, es hora de montarlas. Utilice la orden mount sin olvidar crear los puntos de montaje necesarios para cada partición que haya creado. Como ejemplo montamos la partición raíz:

root #mount /dev/sda3 /mnt/gentoo
Nota
Si necesita que su /tmp/ resida en una partición separada, asegúrese de cambiar los permisos después de montarla:
root #chmod 1777 /mnt/gentoo/tmp
Lo mismo debe ser aplicado a /var/tmp.

Más adelante, siguiendo estas instrucciones, necesitaremos montar el sistema de archivos proc (una interfaz virtual del núcleo) así como otros pseudo-sistemas de archivos del núcleo. Pero primero instalaremos el sistema base de Gentoo