This is Gentoo's testing wiki. It is a non-operational environment and its textual content is outdated.

Please visit our production wiki at https://wiki.gentoo.org

Translations:Handbook:X86/Installation/Disks/2/ru

From Gentoo Wiki (test)
Jump to:navigation Jump to:search
Handbook:X86 Handbook
Установка
Об установке
Выбор подходящего источника для установки
Настройка сети
Подготовка дисков
Установка stage3
Установка базовой системы
Настройка ядра
Настройка системы
Установка системных утилит
Настройка загрузчика
Завершение
Работа с Gentoo
Введение в Portage
USE-флаги
Возможности Portage
Система init-скриптов
Переменные окружения
Работа с Portage
Файлы и каталоги
Переменные
Смешение ветвей программного обеспечения
Дополнительные утилиты
Дополнительные репозитории пакетов
Расширенные возможности
Настройка сети
Начальная настройка
Расширенная настройка
Модульное построение сети
Беспроводная сеть
Добавляем функциональность
Динамическое управление


Введение в блочные устройства

Блочные устройства

Теперь взглянем на аспекты работы Gentoo Linux и Linux в общем, связанные с дисковой подсистемой, включая файловые системы Linux, разделы и блочные устройства. Как только основные понятия о дисках и файловых системах будут изучены, приступите к созданию разделов и файловых систем для установки Gentoo Linux.

Для начала, рассмотрим блочные устройства. Наиболее известным блочным устройством можно считать первый диск в системе Linux, именуемый /dev/sda. И SCSI-, и Serial ATA-диски обозначаются как /dev/sd*; благодаря фреймворку ядра libata даже IDE-диски обозначаются как /dev/sd*. Если же используется старый фреймворк устройств, первым IDE-диском будет /dev/hda.

Вышеназванные блочные устройства представляют абстрактный интерфейс к диску. Пользовательские приложения могут использовать их для взаимодействия с диском, не заботясь о том, какой это диск — IDE, SCSI или ещё какой-либо. Программа просто адресует пространство на диске как совокупность следующих друг за другом 512-байтных блоков с произвольным доступом.

Handbook:Handbook:X86/Blocks/Disks/ru

Создание файловых систем

Введение

Теперь, когда разделы созданы, пора разместить на них файловые системы. В следующем разделе описаны различные поддерживаемые в Linux файловые системы. Те из читателей, кто уже знает, какую файловую систему будет использовать, могут продолжить с раздела создание файловой системы. Другим стоит продолжить чтение, чтобы узнать о доступных файловых системах...

Файловые системы

На выбор доступно несколько файловых систем. Некоторые из них считаются стабильными на архитектуре . Рекомендуется прочитать информацию о файловых системах и об их состоянии поддержки перед тем, как выбирать экспериментальные для важных разделов.

btrfs
Файловая система следующего поколения, обеспечивающая множество дополнительных функций, таких как мгновенные снимки, самовосстановление с помощью контрольных сумм, прозрачной компрессии, субтомов и интегрированным RAID. Некоторые дистрибутивы начали предлагать ее из коробки, но она еще не готова к использованию в промышленной среде. Общедоступны отчеты об ошибках в файловой системе. Ее разработчики призывают людей для безопасности использовать последнюю версию ядра, для решения уже известных проблем. Она разрабатывается уже много лет и пока далеко до завершения. Исправления иногда портируются в более старые версии ядра. Используйте с осторожностью эту файловую систему!
f2fs
Файловая система (Flash-Friendly File System) была создана Samsung для использования на NAND накопителях. По состоянию на 2 квартал 2016 года файловая система считается не завершенной, но она может быть достойным выбором при установке на microSD карту, USB накопитель или другие накопители на основе флэш.
ext2
Это проверенная и надежная файловая система Linux, но она не обладает средствами журналирования метаданных, что означает, что проверка файловой системы ext2 при запуске может занимать довольно много времени. Существует достаточно широкий выбор журналируемых файловых систем нового поколения, целостность которых может быть проверена очень быстро, что является преимуществом перед не журналируемыми системами. Журналирование файловой системы позволяет избежать долгих задержек при загрузке системы и так же избежать ее неустойчивого состояния.
ext3
Журналируемая версия файловой системы ext2, обеспечение журналирования метаданных для быстрого восстановления в дополнение к другим режимам журналирования, таким как журналирование всех данных и упорядоченных данных.
ext4
Изначально созданная как ответвление от ext3, ext4 приносит новые возможности, повышение производительности и устранение ограничений на размер раздела на диске. Она может быть размером до 1 ЭБ и максимальный размер файла 16ТБ. Вместо классического ext2/3 блочного распределения ext4 использует экстенты, которые улучшают производительность при работе с большими файлами и уменьшают фрагментацию. Ext4 также обеспечивает более сложные алгоритмы распределения блоков (задержка распределения и мультиблочное распределение) дающие драйверу файловой системы больше возможностей по оптимизации размещения данных на диске. Ext4 рекомендуется как универсальная файловая система для всех платформ.
JFS
Высокопроизводительная журналируемая файловая система от IBM. JFS это легкая, быстрая и надежная файловая система, основанная на B+tree с хорошей производительностью в различных условиях.
ReiserFS
Основаная на B+tree журналируемая файловая система имеющая хорошую общую производительность, особенно при работе с множеством мелких файлов cost of more CPU cycles. ReiserFS, по видимому, менее поддерживаемая, чем другие файловые системы.
XFS
Файловая система с журналированием метаданных, которая поставляется с мощным набором функций и оптимизирована для масштабируемости. XFS, кажется, менее снисходительно относится к различным аппаратным проблемам.
vfat
Так же известна как FAT32, поддерживается Linux, но без поддержки каких-либо настроек разрешений. В основном используется для взаимодействия с другими операционными системами (в основном Microsoft Windows), но также необходима при использовании некоторых системных прошивок (например UEFI).
NTFS
Эта файловая система (New Technology Filesystem) считается флагманской файловой системой от Microsoft Windows. Как и vfat она не сохраняет настройки разрешений и расширенные атрибуты, необходимые для BSD или Linux для нормальной работы, поэтому она не может быть использована как корневая файловая система. Её необходимо использовать только для взаимодействия с Microsoft Windows компьютерами (обратите внимание на акцент слова только).

При использовании ext2, ext3 или ext4 на малых разделах (менее 8 Гб) файловая система должна быть создана с надлежащими опциями резервирования достаточного количества inodes. Приложение mke2fs (mkfs.ext2) использует настройки "bytes-per-inode" для вычисления сколько inodes должна иметь файловая система. На небольших системах рекомендуется увеличивать расчетное количество inodes.

Для ext2 это может быть сделано следующей командой:

root #mkfs.ext2 -T small /dev/<device>

Для ext3 и ext4 добавьте опцию -j для разрешения журналирования:

root #mkfs.ext2 -j -T small /dev/<device>

Как правило необходимо увеличивать в четыре раза количество inodes для таких систем, снижая "bytes-per-inode" с одного на 16kB до одного на 4kB. Это может быть настроено далее с помощью рейтинга:

root #mkfs.ext2 -i <ratio> /dev/<device>

Создание файловой системы

Для создания файловых систем на разделе или томе существуют пользовательские утилиты для каждого возможного типа файловой системы. Нажмите на имя файловой системы в таблице ниже для получения дополнительной информации о каждой файловой системе:

Файловая система Команда для создания На установочном CD? Пакет
btrfs mkfs.btrfs Да sys-fs/btrfs-progs
ext2 mkfs.ext2 Да sys-fs/e2fsprogs
ext3 mkfs.ext3 Да sys-fs/e2fsprogs
ext4 mkfs.ext4 Да sys-fs/e2fsprogs
f2fs mkfs.f2fs Да sys-fs/f2fs-tools
jfs mkfs.jfs Да sys-fs/jfsutils
reiserfs mkfs.reiserfs Да sys-fs/reiserfsprogs
xfs mkfs.xfs Да sys-fs/xfsprogs
vfat mkfs.vfat Да sys-fs/dosfstools
NTFS mkfs.ntfs Да sys-fs/ntfs3g

Например, чтобы сделать корневой раздел () в ext4 при использовании структуры разделов из примера, используются следующие команды:


root #mkfs.ext4

Теперь созданы файловые системы на вновь созданных томах (или логических разделах).

Активация раздела подкачки

Для инициализации разделов подкачки используется команда mkswap:

root #mkswap

Чтобы активировать раздел подкачки, используйте swapon:

root #swapon

Создайте и активируйте раздел подкачки командами выше:

Монтирование корневого раздела

Теперь, когда созданы разделы и файловые системы на них, настало время их смонтировать. Используйте команду mount, но не забывайте, что необходимо создать каталоги для монтирования каждого созданного раздела. В качестве примера мы смонтируем корневой раздела:

root #mount /mnt/gentoo
Note
Если /tmp/ должен находится на отдельном разделе, не забудьте после монтирования изменить права доступа:
root #chmod 1777 /mnt/gentoo/tmp
Это так же справедливо для /var/tmp.

Позже в инструкции будут смонтированы файловая система proc (виртуальный интерфейс с ядром) и другие псевдо-файловые системы ядра. Но сначала мы устанавливаем установочные файлы Gentoo.