This is Gentoo's testing wiki. It is a non-operational environment and its textual content is outdated.
Please visit our production wiki at https://wiki.gentoo.org
Handbook:SPARC/Installation/Disks/ko
블록 장치 소개
블록 장치
리눅스 파일 시스템, 분할 영역, 블록 장치 등 젠투 리눅스 및 일반적인 리눅스 운영체제의 바람직한 디스크 측면의 양상을 살펴보도록 하겠습니다. 디스크와 파일 시스템의 입출력을 이해하고 나서, 젠투 리눅스 설치에 필요한 분할 영역과 파일 시스템을 설정하겠습니다.
시작에 앞서 블록 장치를 살펴보도록 하죠. 아마~도 리눅스 시스템에서 첫번째 드라이브로 표시하는 대부분 잘 알려진 블록 장치는 /dev/sda겠죠. SCSI와 직렬 ATA 드라이브 둘 다 /dev/sd*와 같은 식으로 표시합니다. 게다가 커널의 libata 프레임워크에서는 IDE 드라이브도 마찬가지로 /dev/sd*로 표시합니다. 이전 장치 프레임워크에서 첫번째 IDE 드라이브는 /dev/hda입니다.
위에 나타낸 블록 장치는 디스크의 추상 인터페이스를 표현합니다. 사용자 프로그램은 블록 장치가 IDE가 됐든 SCSI가 됐든 뭐가 됐든지간에 신경쓰지 않고 디스크와 소통을 수행할 때 이 블록 장치를 사용할 수 있습니다. 프로그램에서는 디스크의 저장 공간에 대해, 연속적이며, 임의로 접근하는 512 바이트 블록의 모음으로 다룰 수 있습니다.
공간 분할
이론적으로는 리눅스 시스템을 전체 디스크에 넣을 수 있지만, 실제론 거의 불가능합니다. 대신 전체 블록 장치를 작게 나누어 더욱 관리하기 쉬운 블록 장치를 만들 수 있습니다. 이를 파티션 또는 슬라이스라고 부릅니다.
첫번째 SCSI 디스크의 첫번째 파티션은 /dev/sda1이고 두번째 파티션은 /dev/sda2 이런식입니다.
썬 시스템의 세번째 파티션은 "전체 디스크" 슬라이스로 설정합니다. 이 파티션에는 파일 시스템을 포함해서는 안됩니다.
DOS 파티션 형태를 쓰던 사용자는 썬 디스크 레이블에서 "주" 파티션과 "확장" 파티션이 없음을 참고해야 합니다. 대신 드라이브별로 최대 8개의 파티션을 사용할 수 있으며 세번째 파티션은 예약되어 있습니다.
분할 배치 설계
분할 영역을 얼마나 많이, 크게 할까요?
분할 영역의 수는 환경에 따라 다릅니다. 예를 들어, 사용자가 많을 경우 보안성을 개선하고 백업을 쉽게 하기 위해 /home/을 나누는 것이 좋습니다. 젠투를 메일 서버로 설치한다면, /var/에 모든 메일을 저장하므로 /var/를 나누어야 합니다. 파일 시스템의 탁월한 선택은 성능을 극대화합니다. 게임 서버는 게임 서버를 설치할 /opt/를 따로 나눕니다. 이유는 /home/과 비슷합니다: 보안과 백업이죠. 대부분의 상황에서 /usr/는 거대한 상태고 남아있습니다. 주요 프로그램을 저장할 뿐만 아니라, (보통 /usr/portage에 기본으로 들어가는) 젠투 이빌드 저장소는 거의 650MB를 차지합니다. 이 디스크 공간은 보통 이빌드 저장소내에 저장하는 packages/와 distfiles/ 디렉터리는 제외하고 추산합니다.
관리자 취향에 달려있습니다. 분할 영역 또는 볼륨을 나누면 다음과 같은 장점이 있습니다:
- 각 분할 영역 또는 볼륨에 대해 최상의 동작을 수행하는 파일 시스템을 선택합니다.
- 제 기능을 상실한 도구가 분할 영역 또는 볼륨에 계속 파일을 기록할 경우, 남아 있는 공간이 없어져 전체 시스템이 동작하지 않습니다.
- 필요한 경우, (이 장점은 여러 개의 분할 영역보다는 여러 대의 디스크에서 더 돋보이지만) 동시에 여러 분할 영역을 검사할 수 있어, 파일 시스템 검사 시간을 줄일 수 있습니다.
- 일부 분할 영역 또는 볼륨을 읽기 전용,
nosuid
(setuid 무시),noexec
(실행 비트 무시) 등으로 마운트하여 보안성을 개선할 수 있습니다.
그러나, 마찬가지로 다중 분할 영역에는 단점도 존재합니다. 제대로 설정하지 않으면 어떤 분할 영역에는 공간이 상당히 남지만, 다른 분할 영역은 그렇지 않을 수 있습니다. 다른 골칫거리는 분할 영역이 나뉘어져 있는 상황입니다. /usr/ 또는 /var/와 같은 중요한 마운트 지점은 특히 그렇습니다. 다른 부팅 스크립트를 시작하기 전에 분할 영역을 마운트하려면 관리자가 종종 initramfs로 부팅해야합니다. 항상 있는 경우는 아니기 때문에 결과가 다양하게 나타납니다.
디스크에서 GPT 레이블을 사용하지 않으면 SCSI와 SATA에서는 분할 영역 갯수가 15개로 제한되어있습니다.
스왑 공간이 무엇인가요?
완벽한 스왑 분할 영역 값은 없습니다. 스왑 영역의 존재 목적은 내부 메모리(RAM)가 용량 고갈에 처해있을 때 커널에서 디스크 공간을 제공하려는 것입니다. 스왑 영역은 커널에서 곧 접근하지 않을 메모리 페이지를 디스크(스왑 또는 페이지-아웃)에 옮기고 메모리를 확보할 수 있도록 합니다. 물론 메모리가 갑자기 필요할 때도 이 페이지를 메모리에 되돌려놓습니다만(페이지-인), 시간이 오래걸립니다(내부 메모리에 비해 디스크는 비교적 매우 느립니다).
시스템이 메모리를 집중적으로 사용하는 프로그램을 실행하려 하지 않거나 시스템에 충분한 메모리가 있을 경우 많은 스왑 영역이 필요하지 않을지도 모릅니다. 그러나 스왑 영역은 최대 절전모드 기능을 사용할 경우 전체 메모리 공간을 사용하기도 합니다. 시스템을 최대 절전모드로 진입하려 한다면, 더 큰 스왑 영역이 필요하며, 최소한, 종종 시스템에 대용량의 메모리를 설치합니다.
기본 분할 형태
아래의 표에서는 대부분의 시스템에서의 적합한 시작 방식을 제안합니다. 어디까지나 예제이기 때문에 다른 분할 형태를 사용하셔도 됩니다.
SPARC 에서는 일반적으로 /boot 파티션을 따로 나누지 않는 것이 좋으며, 따로 나누면 부트로더 설정을 복잡하게 만듭니다.
파티션 | 파일 시스템 | 크기 | 마운트 지점 | 설명 |
---|---|---|---|---|
/dev/sda1 | ext4 | <2 GB | / | 루트 파티션. OBP 버전 3 이하의 SPARC64 시스템에서는, 이 영역이 2GB 보다 작아야 하며 디스크의 첫번째 파티션이어야 합니다. 최근의 OBP 버전은 더 큰 파티션을 취급할 수 있으며 마찬가지로, 동일한 파티션에 /usr, /var 그리고 기타 위치를 포함할 수 있습니다. |
/dev/sda2 | swap | 512 MB | 없음 | 스왑 파티션. 부트스트랩과 거대한 컴파일시 최소한 512MB 용량의 RAM(스왑 포함)이 필요합니다. |
/dev/sda3 | 없음 | 전체 디스크 | 없음 | 전체 디스크 파티션. SPARC 시스템에서 필요함. |
/dev/sda4 | ext4 | 최소 2 GB | /usr | /usr 파티션. 프로그램을 여기에 설치합니다. 기본적으로 이 파티션은 포티지 데이터도 저장합니다.(소스 코드 제외 500MB 가량의 공간). |
/dev/sda5 | ext4 | 최소 1 GB | /var | /var 파티션. 프로그램에서 만든 데이터에서 사용합니다. 기본적으로 포티지에서는 컴파일 도중 사용하는 임시 공간으로 활용합니다. 모질라 또는 리브레 오피스와 같은 거대한 프로그램의 경우 빌드시 1GB 의 여유 공간이 필요할 수 있습니다. |
/dev/sda6 | ext4 | 남은 공간 | /home | /home 파티션. 사용자 내 폴더 용도. |
디스크 공간 분할에 fdisk 사용
다음 내용에서는 이전에 설명한 파티션 배치를 만드는 방법의 예제를 분명하게 설명합니다:
파티션 | 설명 |
---|---|
/dev/sda1 | / |
/dev/sda2 | 스왑 |
/dev/sda3 | 전체 디스크 슬라이스 |
/dev/sda4 | /usr |
/dev/sda5 | /var |
/dev/sda6 | /home |
필요한대로 파티션 배치를 바꾸십시오. 이전 시스템이라면 첫번째 루트 파티션 전체 크기는 2GB까지만 잡을 수 있음을 기억하십시오. SCSI와 SATA에는 파티션 갯수가 15개로 제한되어있습니다.
fdisk 실행
디스크를 매개변수로 잡아 fdisk를 시작하십시오:
root #
fdisk /dev/sda
Command (m for help):
존재하는 파티션을 보려면 p를 입력하십시오:
Command (m for help):
p
Disk /dev/sda (Sun disk label): 64 heads, 32 sectors, 8635 cylinders Units = cylinders of 2048 * 512 bytes Device Flag Start End Blocks Id System /dev/sda1 0 488 499712 83 Linux native /dev/sda2 488 976 499712 82 Linux swap /dev/sda3 0 8635 8842240 5 Whole disk /dev/sda4 976 1953 1000448 83 Linux native /dev/sda5 1953 2144 195584 83 Linux native /dev/sda6 2144 8635 6646784 83 Linux native
출력 내용의 썬 디스크레이블을 기록하십시오. 내용이 빠져있으면 디스크에서는 썬 파티션 방식이 아닌 DOS 파티션 방식을 사용합니다. 이 경우, 썬 파티션 테이블 방식으로 디스크를 분할했는지 확인하려면 s 키를 사용하십시오:
Command (m for help):
s
Building a new sun disklabel. Changes will remain in memory only, until you decide to write them. After that, of course, the previous content won't be recoverable. Drive type ? auto configure 0 custom (with hardware detected defaults) a Quantum ProDrive 80S b Quantum ProDrive 105S c CDC Wren IV 94171-344 d IBM DPES-31080 e IBM DORS-32160 f IBM DNES-318350 g SEAGATE ST34371 h SUN0104 i SUN0207 j SUN0327 k SUN0340 l SUN0424 m SUN0535 n SUN0669 o SUN1.0G p SUN1.05 q SUN1.3G r SUN2.1G s IOMEGA Jaz Select type (? for auto, 0 for custom): 0 Heads (1-1024, default 64): Using default value 64 Sectors/track (1-1024, default 32): Using default value 32 Cylinders (1-65535, default 8635): Using default value 8635 Alternate cylinders (0-65535, default 2): Using default value 2 Physical cylinders (0-65535, default 8637): Using default value 8637 Rotation speed (rpm) (1-100000, default 5400): 10000 Interleave factor (1-32, default 1): Using default value 1 Extra sectors per cylinder (0-32, default 0): Using default value 0
하드디스크 자체 문서에서 올바른 값을 찾을 수 있습니다. 'auto configure' 옵션이 항상 동작하는것만은 아닙니다.
기존 파티션 삭제
이제 기존 파티션을 삭제할 때가 되었습니다. 기존 파티션을 삭제 하려면 d 키를 누르고 Enter 키를 치십시오. 삭제할 파티션의 번호를 지정하십시오. 이전의 /dev/sda1 파티션을 삭제한다면 다음을 입력하십시오:
Command (m for help):
d
Partition number (1-4): 1
3번 파티션(전체 디스크)은 삭제하지 마십시오. 필요합니다. 이 파티션이 없으면 위에서 설명한 썬 디스크레이블 만들기 절차를 따르십시오.
전체 디스크 슬라이스를 제외한 모든 파티션을 삭제했다면, 파티션 배치는 다음과 같이 나타나야합니다:
Command (m for help):
p
Disk /dev/sda (Sun disk label): 64 heads, 32 sectors, 8635 cylinders Units = cylinders of 2048 * 512 bytes Device Flag Start End Blocks Id System /dev/sda3 0 8635 8842240 5 Whole disk
루트 파티션 만들기
다음 루트 파티션을 만들겠습니다. 루트 파티션을 만들려면 n키를 눌러 새 파티션을 만들고 1키를 눌러 파티션을 만드십시오. 첫번째 실린더를 물어보면 그냥 Enter키를 치십시오. 마지막 실린더를 물어보면 +512MB를 입력하여 512MB 크기의 파티션을 만드십시오. 전체 루트 파티션을 디스크의 처음 2GB 용량의 범위내에 맞췄는지 확인하십시오. 이 단계 결과의 출력은 다음과 같습니다:
Command (m for help):
n
Partition number (1-8): 1 First cylinder (0-8635): (press Enter) Last cylinder or +size or +sizeM or +sizeK (0-8635, default 8635): +512M
(p 키로)파티션을 조회하면, 다음 파티션 출력이 나타납니다:
Command (m for help):
p
Disk /dev/sda (Sun disk label): 64 heads, 32 sectors, 8635 cylinders Units = cylinders of 2048 * 512 bytes Device Flag Start End Blocks Id System /dev/sda1 0 488 499712 83 Linux native /dev/sda3 0 8635 8842240 5 Whole disk
스왑 파티션 만들기
다음 스왑 파티션을 만들도록 하겠습니다. 스왑 파티션을 만들려면 n키를 입력하여 새 파티션을 만들고, 우리 같은 경우는 /dev/sda2를 만들겠으니 2를 입력하여 두번째 파티션을 만듭니다. 첫 실린더를 물어보면 그냥 Enter키를 칩니다. 마지막 실린더를 물어보면 +512M을 입력하여 512MB 크기의 파티션을 만듭니다. 그 다음 파티션 형식을 설정하려면 t를 입력하고, 2눌러 방금 만든 파티션을 선택한 후, 파티션 형식을 Linux Swap으로 바꾸기 위해 82를 입력합니다. 이 단계가 끝나면 p를 입력하여 다음과 같은 파티션 표를 출력해야 합니다:
root #
Command (m for help):
root #
p
Disk /dev/sda (Sun disk label): 64 heads, 32 sectors, 8635 cylinders Units = cylinders of 2048 * 512 bytes Device Flag Start End Blocks Id System /dev/sda1 0 488 499712 83 Linux native /dev/sda2 488 976 499712 82 Linux swap /dev/sda3 0 8635 8842240 5 Whole disk
usr, var, home 파티션 만들기
마지막으로, /usr, /var, /home 파티션을 만들겠습니다. 이전과 마찬가지로, n 키를 눌러 새 파티션을 만들고, 우리 같은 경우는 /dev/sda4를 만들겠으니 4를 입력하여 세번째 파티션을 만듭니다(전체 디스크 슬라이스는 파티션으로 취급하지 않습니다). 첫번째 실린더를 물어보면 그냥 Enter를 치십시오. 마지막 실린더를 물어보면 +2048MB를 입력하여 2GB 크기의 파티션을 만드십시오. /dev/sda5와 sda6에 대해서도 원하는 크기만큼 설정하며 과정을 반복하십시오. 과정이 끝나면 파티션 테이블은 다음과 같은 결과를 나타냅니다:
Command (m for help):
p
Disk /dev/sda (Sun disk label): 64 heads, 32 sectors, 8635 cylinders Units = cylinders of 2048 * 512 bytes Device Flag Start End Blocks Id System /dev/sda1 0 488 499712 83 Linux native /dev/sda2 488 976 499712 82 Linux swap /dev/sda3 0 8635 8842240 5 Whole disk /dev/sda4 976 1953 1000448 83 Linux native /dev/sda5 1953 2144 195584 83 Linux native /dev/sda6 2144 8635 6646784 83 Linux native
저장하고 나가기
w를 입력하여 파티션 배치를 저장하고 fdisk를 빠져나가십시오:
Command (m for help):
w
파일 시스템 만들기
도입부
이제 분할 영역을 만들었고, 파일 시스템을 제 위치에 얹어놓을 차례입니다. 다음 절에서는 리눅스에서 지원하는 다양한 파일 시스템을 설명합니다. 어떤 파일 시스템을 사용할 지 이미 알고 있는 독자라면 파티션에 파일 시스템 반영하기로 계속 진행할 수 있습니다. 그렇지 않으면 계속 읽어 내려가면서 쓸 수 있는 파일시스템이 어떤 종류가 있는지 알아보십시오.
파일 시스템
다양한 파일 시스템이 있습니다. 일부는 sparc 아키텍처에서 안정적입니다 - 중요한 분할 영역을 위해서라면 좀 더 시험적인 분할 영역을 선택하기 전에 파일 시스템과 지원 상태에 대한 내용을 좀 더 읽어보시는 것이 좋겠습니다.
- btrfs
- 스냅샷, 검사합을 통한 자체복구, 투명 압축, 하위 볼륨, 통합 RAID 같은 고급 기능을 제공하는 차세대 파일 시스템입니다. 일부 배포판은 이미 특별한 옵션으로 탑재했지만 실무에서 쓰기엔 준비가 미흡합니다. 파일 시스템이 깨지는 경우가 다반사입니다. 개발자들은 이전 버전에 문제가 있기 때문에 안전을 위해 최신 커널 버전을 사용하라고 합니다. 몇년 동안 이래왔고 무엇인가 바뀐다고 하면 너무 일찍 언급합니다. 깨지는 문제를 고친다고 하면 가끔 이전 커널에 있던 대로 돌아갑니다. 파일 시스템을 쓰려 한다면 위험을 감수하십시오!
- ext2
- 검증된 리눅스 파일시스템이지만 메타데이터 저널링기능이 없습니다. 이는 시작시간의 파일시스템 검사루틴에서 조금 더 많은 시간소모를 할 수 있다는 의미입니다. 이제 일관성 검사를 더욱 빠르게 할 수 있고 비 저널링의 대체 수단으로써 일반적으로 더욱 선호하는 차세대 저널링 파일시스템의 상당한 선택요소가 있습니다. 저널링 파일시스템은 시스템을 시동하고 파일시스템에 비일관 상태가 발생했을 때 긴 지연시간을 줄입니다.
- ext3
- 빠른 복구 기능을 제공하는 메타데이터 저널링을 제공하며, 게다가 전체 데이터와 정렬된 데이터 저널링과 같은 강화 저널링 모드도 지원하는 ext2 파일시스템의 저널링 버전입니다. 대부분의 모든 상황에서 고성능 동작이 가능한 HTree 색인을 사용합니다. 간단히 말해 ext3는 아주 좋은 믿을 수 있는 파일시스템입니다. ext3을 모든 목적의 모든 플랫폼 파일시스템으로 추천합니다.
- ext4
- ext3으로부터 갈라져 나와 성능을 향상시키고 디스크상 형식에 대해 적절한 수정을 가하여 용량 제한을 없애는 새로운 기능을 포함하여 만든 파일시스템입니다. 볼륨 하나의 크기를 1EB까지 늘릴 수 있고, 파일 최대 크기는 16TB가 될 수 있습니다. 기존의 ext2/3 비트맵 블록 할당 대신에 ext4는 대용량 파일 성능을 끌어올리고 단편화를 줄인 extents를 사용합니다. ext4는 디스크의 데이터 배치에 대해 최적화 할 더 많은 방법을 파일시스템 드라이버에 제공하는 좀 더 세련된 블록 할당 알고리즘(지연할당 및 다중블록 할당)을 제공합니다. ext4는 모든 목적의 모든 플랫폼의 파일 시스템에 추천합니다.
- f2fs
- 플래시 지향 파일 시스템은 처음에 낸드 플래시 메모리에서 활용할 목적으로 삼성에서 만들었습니다. 2016년 2/4분기 시점에, 이 파일 시스템은 여전히 미완의 상태지만 젠투를 마이크로SD 카드, USB 드라이브, 기타 플래시 기반 저장 장치에 설치할 경우 괜찮은 선택입니다.
- JFS
- IBM의 고성능 저널링 파일시스템입니다. JFS는 다양한 상황속에서도 좋은 성능을 내는, 가볍고 빠르며 믿을 수 있는 B+트리 기반 파일시스템입니다.
- ReiserFS
- 전반적으로 좋은 성능을 내며 특히 용량이 작은 수많은 파일들을 다룰 때 더 많은 CPU 사이클을 소비하는 경우 좋은 성능이 나는 B+트리 기반 저널링 파일시스템입니다. ReiserFS는 다른 파일시스템보다 덜 관리중인 것으로 보입니다.
- XFS
- 견고한 기능 모음을 지니고 있으며 확장성에 있어 최적화 된 메타데이터 저널링 파일시스템입니다. XFS는 다양한 하드웨어 문제에 대해 그다지 관대하진 않은 것 같습니다.
- vfat
- FAT32로 알려진 vfat은 리눅스에서 지원하지만 권한 설정은 지원하지 않습니다. 여러 운영 체제간 상호 운용성을 목적으로(주로 마이크로소프트 윈도우) 활용하지만 일부 시스템 펌웨어(UEFI)용으로도 필요합니다.
- NTFS
- "New Technology" 파일 시스템은 마이크로 소프트의 대표 파일 시스템입니다. 위의 vfat과 비슷하게 BSD 또는 리눅스에서 필요한 권한 설정 또는 확장 속성을 저장하지 않기에 루트 파일 시스템으로 활용할 수 없습니다. 오직 마이크로소프트 윈도우와 상호 연동할 때만 활용해야합니다(오직 이 경우에만 역점을 둠을 참고하십시오).
(8GB 이하의) 작은 분할 영역에서 ext2, ext3, ext4 를 사용한다면, 충분한 inode 갯수를 예약할 적당한 옵션으로 파일 시스템을 만들어야합니다. mke2fs(mkfs.ext2)에서는 "아이노드 당 바이트" 설정을 사용하여 파일 시스템에서 보유할 아이노드 갯수를 계산합니다. 작은 분할 영역일수록 아이노드 갯수를 늘리는 것이 좋습니다.
ext2에서는, 다음 명령을 사용하시면 됩니다:
root #
mkfs.ext2 -T small /dev/<device>
ext3과 ext4에서는, -j
옵션을 추가하여 저널링을 활성화하십시오:
root #
mkfs.ext2 -j -T small /dev/<device>
각 16kB 영역을 하나의 4kB 영역으로 줄이는 "아이노드 당 바이트"로 주어진 파일 시스템의 아이노드 갯수를 네 배로 뻥튀기(?)합니다. 비율값을 부여하여 속성을 조절할 수 있습니다:
root #
mkfs.ext2 -i <ratio> /dev/<device>
분할 영역에 파일 시스템 반영하기
분할 영역 또는 볼륨에 파일 시스템을 만들 때, 각 파일 시스템에서 사용할 수 있는 도구가 있습니다. 각 파일 시스템의 추가 정보를 살펴보려면 하단 표의 파일 시스템 이름을 누르십시오:
파일시스템 | 구성 명령 | 최소 CD 포함? | 꾸러미 |
---|---|---|---|
btrfs | mkfs.btrfs | Yes | sys-fs/btrfs-progs |
ext2 | mkfs.ext2 | Yes | sys-fs/e2fsprogs |
ext3 | mkfs.ext3 | Yes | sys-fs/e2fsprogs |
ext4 | mkfs.ext4 | Yes | sys-fs/e2fsprogs |
f2fs | mkfs.f2fs | Yes | sys-fs/f2fs-tools |
jfs | mkfs.jfs | Yes | sys-fs/jfsutils |
reiserfs | mkfs.reiserfs | Yes | sys-fs/reiserfsprogs |
xfs | mkfs.xfs | Yes | sys-fs/xfsprogs |
vfat | mkfs.vfat | Yes | sys-fs/dosfstools |
NTFS | mkfs.ntfs | Yes | sys-fs/ntfs3g |
예를 들어, 예제 분할 영역 구조와 같이 ext2 형식의 ext4 형식의 루트 분할 영역 (/dev/sda1)을 취하려면, 다음 명령을 사용할 수 있습니다:
root #
mkfs.ext4 /dev/sda1
이제 새로 만든 분할 영역(또는 논리 분할 영역)에 파일 시스템을 만들겠습니다.
스왑 분할 영역 활성화
mkswap은 스왑 분할 영역을 초기화하는 명령입니다:
root #
mkswap /dev/sda2
스왑 분할 영역을 활성화하려면, swapon 명령을 사용하십시오:
root #
swapon /dev/sda2
위에 언급한 명령으로 스왑을 만들고 활성화하십시오.
루트 분할 영역 마운트
이제 분할 영역을 초기화했고 파일 시스템을 넣었으므로 분할 영역을 마운트할 차례입니다. mount 명령을 사용하지만 만들어놓은 모든 분할 영역에 대해 마운트 디렉터리를 만들 필요는 없다는 사실을 잊지 마십시오. 예제를 통해 우리는 루트 분할 영역을 마운트하겠습니다:
root #
mount /dev/sda1 /mnt/gentoo
/tmp/를 따로 나눈 분할 영역에 두어야 한다면, 마운트하기 전에 퍼미션을 바꾸었는지 확인하십시오:
root #
chmod 1777 /mnt/gentoo/tmp
지침을 따르고 나면 proc 파일 시스템(커널 가상 인터페이스)와 다른 커널 의사 파일 시스템을 마운트합니다. 그러나 우선 젠투 설치 파일을 설치하겠습니다.